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NATTONAT, AFRONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1106

ELEMENTS AND PARAMETERS OF THE OSCULATING ORBIT
AND THEIR DERIVATIVES

By Wilbur F. Dobson, Vearl N. Huff,
and Arthur V. Zimmerman

SUMMARY

The analysis determines the time derivatives of the conic-section
orbital elements in a disturbed orbit by perturbation methods. Integra-
tion of any of the several resulting systems of six first-crder linear
differential equations by numerical methods car be a useful tool for the
solution of problems in orbital mechanics.

Equations for the two-body orbit are also summarized in a convenlent
manner.

INTRODUCTION

The recent emphasis on space-flight trajectcry calculations and the
use of electronic computing machinery have combired to increase the in-
terest in the perturbation methods for studying problems in celestial
mechanics. This is especiclly true of the methods that leave the dis-
turbing function undevelopcd and require numericel integration to com-
plete zhe solution. Previously, the amount of numerical work required
rendered precision calculations by these latter rethods impracticeal. It
is the purpose of this report to examine and extend some of the previous
work in perturbation theory to secure forms that may be better adapted to
numerical integration, at least for specific problems.

The basic work in developing expressions for the derivatives of the
orbital elements must be credited to various notable contributors in
dynamical astronomy. Perturbation theory was begun by Euler in 1748.
However, the first complete development was vresented by Lagrange in
178z2.

The perturbation method summarized herein is formulated in terms of
Lagrangian brackets. Numerous methods for evaluating the brackets have
been published. The indirect method of evaluating the brackets used



herein is attributed to Whittaker, as reported by Smart (ref. 1). The
characteristic of the indirect methods is that the work begins with the
derivation of a general expressiocn for a Lagrangian bracket, from which
all brackets are easily evaluated.

For convenience, the present report gives alternative forms of the
perturbation derivatives; and, by using the results presented in the
tables, many others are obtainable. The extension to the case of circu-
lar orbits has been included. A collection of useful two-body equations
is also given in table I without derivation.

The procedure indicated for the reduction of the three second-order
linear differentlal equations of motion in rectangular coordinates to
six first-order linear differential equations in orbital elements follows
the pattern, but is revised from that given in Moulton (ref. 2). The
analysis has been further generalized by avoiding the reguirement that
the perturbation function be a potential function. This extension shows
that the results are valid for thrust and drag, which are not potential-
type functions. Another revision concerns the determination of the dis-
turbing functions In terms of the elements that define the size, shape,
and position in the orbit. This procedure given herein is believed to
be more direct than that given elsewhere (refs. 1 and 2).

ANATYSTS
Equations of Motion

Consider the motion of an object subjJect to an inverse-square cen-
tral gravitational acceleration directed toward the origin, and also sub-
Ject to smaller disturbing accelerations that can be expressed as func-
tions of the varisbles and constants of the prcblem. Let OX, 0Y, OZ in
figure 1 be the coordinate axes in a noninertial Cartesian system having
its origin located at the center of the mass M,. The equations of mo-

tion of the object are then as follows from application of Newton's
second law to the problem (e.g., refs. 1 and 2):

2 N
-d'—x+E'}£=A
dtz r5 x
.d‘_ZI+HX_A (1)
at2  rd3 Y ‘
d"~z Bz

-+ = A

at2 2 z -~
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Tn the notation adopted hersinafter, equation (1) will be indicated &as
2

-+

Q
e
|t
(SN I

= Ay, X - ¥,z (1)

£2

Q.

F

where x — y,z indicates that separate equations in x, y, and =z are
included to complete the set. All symbols are de7ined in appendix A.

The acceleration term ux/r5 is due to central grevitational attraction,
where

E-120

U= kz(Mo + m) (2)

(k2 is the gravitationel constant, M, 1s the mass of the body at the

origin, and m is the object's mass). The components of the disturbing
acceleration that disturb the two-body orbit are Ay, X = ¥,2Z in equa-

tions (1) and may be written as

A=t - 60y M2+ =Z), x-ye (3)
i=1

where M; 1s the mass of tae ith gisturbing body, n is the number of

gravitating bodies excluding the central body, &4 is defined by
PEm (k- x)P o+ (y -y B (2 - 2g)" (4)

and f, is the component of the disturbing acceleration along O0X due

to all other forces. For example, these may include propulsion thrust,
aerodynamic forces, and forces due to the oblateress of M,. No restric-

tion need be placed on the form of disturbing acceleration except that
it be sufficiently well defined to permit integretion.

Equations (1) may be integrated directly by mumerical methods. How-
ever, in many cases larger intervals may be used in numerical integra-
tion, or approximate closed-form solutions can be obtained 1f the eque-
tions are expressed in terms of perturbations of orbital elements.

The perturbation theory uses as a reference an orbit having no per-
turbations. If the disturbing acceleration is assumed to be zero, the
differential equations become

“x

1
Q.

+

Eal%

= 0, X = Y,2 (5)

o7
N

t

-



The solution of equations (5) is readily cbtained and is found to be &
conic section. The motion of the object can be represented by six or-
bital elements obtained from the constants of integration of equations
(5). Table I gives a collection of two-body equations relating selected
orbital elements and parameters. Although it is not possible to express
the Cartesian positions and velocities explicitly in terms of the orbital
elements, the solutions of equations (5) may be indicated as

x = x(ey, ep, Czy Cyqy Cg, Cgy t), X = ¥,z (6a) b

.. g

x = x(cy, co, Cz, C4y C5, Cgs ) X - ¥,z (6b) Q
where Cis Coy ° ° 7y Cg aTE orbital elements.

If A, # 0, x - y,z in equations (1), the path is not a simple

conic. However, at any instant it may be regarded as & conic with vari-
able orbital elements. In fact, equations (6) are the solutions of equa-
tions (l) if the orbital elements s c2, ‘s c6 are regarded as

variables.

This introduces the concept of the osculating orbit. Let an object
be moving in a perturbed path about a central body. An instantaneous
two-body orbit always exists tangent to the actual path at the point and
having a velocity in the orbit equal to that of the actual body. Such
tangent orbits are called the osculating orbits. The relations implicit
in this definition are used to derive the equations for the disturbed
orbit in terms of orbital elements. The three second-order differential
equations of equations (1) are transformed to six first-order simultaneous
differential equations invclving orbital elements. Lagrangian brackets
are utilized to solve the set of simultaneous differential equations for
derivatives of the various orbital elements explicitly. The explicit
derivatives are the objective of this report.

As the first step in obtaining these derivatives, equations (6) are
differentiated regarding C1sCps * " 7y Cg @8 variables. The following

equations that apply to the actual path are obtained:

d_x_ - aX + ax dck x - 7z (78.)
at = 3t Sy At ’ I
=1
2 . *+ de
dcx _ ox ox k
ax _ ox 4 —=, X > ¥,z (7p) -
a2 3t Bck at
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Equations (1) may be introduced to eliminate (d2x/at2), x » y,z from
equations (7b). Then equations (7) may be written as

5
dx  dx dx  deg
- — + —_— =0 X - Z 8a
St T dt ey v ’ I (82)
=]
6
dx , MX dx 9k
+ — —_— -
&' I‘3 + §Ck dt AX’ X y,Z (Bb)
k=1

In the osculating orbit dck/dt =0 and A, = 0, so that eguations

(8) become

Ox  dx
St - 9 X = ¥,z (9a)
giw*ﬁ:o, X = ¥,z (9b)
t 3

Introducing the requirement that velocities in the actual path and
in the osculating orbit are equal, equations (9a) may be substituted into
equations (8a); and similarly, because the acceleration in the osculating
orbit differs from that of the true orbit only by the disturbing acceler-
ation, equations (9b) may be substituted into equation (8b) to give

o)

) .

E%E &y = 0, X > ¥,2 (10a)
=1
ok _ 4 = - (10b)
5;; x ~ Ax =Y, X Y2

k=1

Equations (10) are the resulting six first-order differential egquations.
They are not adapted for computation because equations (6) are not explic-
itly available and because the derivatives of the orbital elements appear
simultaneously rather than explicitly. This difficulty is conveniently

removed by further meanipulation. The following equations are written in



a form convenient for formulation in terms of Lagrangian brackets:

6 6
dx . ox ox - | ox
3, “x " A 5e; T Scy, k[ 3c;
k=] Jo=1
& 6
Eé}k_' - oF  _ oF & o
¥ Bck k Ay Bcj ack °k Bcj
k= Jo=
6
dz . dz dz . }dz
NV ) Rl Aol s =0 (11e)
IF k:l j=l,2,"',6

The validity of equations (11a) is obvious because each term contains a
zero factor from equations (10). Results of the operations shown may be
written as

6
2 [cj,ck]ékc ch, J=1,2,° + *,6 (11p)
k=1
where .
[cyrep] = Ox_ Ok _o%x ox , Oy of _oy Oy ,90z 0z _ 9z Oz
dJ aCj ack aCj Bck BCJ ack aCJ Bck aCj ack aCj ack
(12)
and
a ox o oz
ch_Ax&:—.-+Ay5a‘é—.-+AZ§-é-.—, 3= 1,2, + *,6 (13)
dJ J dJ

The brackets [cj,ck] are the Lagrangian brackets.

202T-d
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General Formula for a Lagrangian Bracket

Previously, a general set of orbital elements has been used. Before
proceeding to evaluate the Lagrangian brackets of equations (11b), it is
convenient to choose a specific set of independert orbital elements so as
not to complicate the analysis. The set chosen is not significant; for,
as will be shown in the RESULTS section, it is relatively simple to sub-
stitute any elements that may be desired. If there are chosen as the set
of orbital elements the semimajor axis a, eccentricity e, time of peri-

center passage tp, argument of pericenter w, orbit inclination I, and

longitude of the ascending node £, the expressicn for the Lagrangian
bracket is

(—tP’-gg) + (w, /pa(l - e2) ) + (2, /pa(l - e2)cos I)

(s,q) (s,q) (s,a)

(14)

where s and q are any of the orbital elements. The right-hand side
is expressed in Jacobian notation. Note that [s,s] = 0 and

[s,q] = -[q,s] from equation (12). The derivaticn of equation (14) is
given in appendix B. It results from geometric relations existing eamong
the instantaneous values of the orbital elements of any orbit. It will
be used to evaluate the Lagrangian brackets of equations (11p).

Evaluation of Lagrangian Brackets
A Lagrangian bracket appears in equations (11b) for each of the 36

combinations of the six chosen orbital elements. Evaluation from equa-
tion (14) shows six of the twelve nonzero brackets to be

e ] = - 2Ut) a(oy/za) | u

D Sip da gl

(15a)

[a,0] = - % & ‘“aéi - ef) _ . %—Jg J1 - e2 (15b)

~/ - e2
[a,ﬂ] = - Bg Oyuall Bae Jeos I = - % cos& I‘@% +1 - el (15c)

[e;(b] = = % 9 ip'aéi - e2) = —e-Ll tlaez (lSd)



2
[e,2] = - gg_a pa(l éee Jcos I _ e;yfaez cos T (15¢)

[1,2] = - ag O~/paf l < e Jeos I _ = ua(l - e2)sin T (15¢)

By observing the property of the brackets that [s,ql = -[g,s], the values
of the remaining six nonzero brackets are apparent from equations (15).
Omitting all zero brackets, equations (1lb) become

[a,tp]{:p + [a,0le + [a,2]% = D, (16a)
[e,wld + [e,2]Q = D (16b)
(1,212 = D; (16c)

~la,tpla = Dtp (164)

-la,w]a - [e,w]le = Dy (16e)
[a,2]a - [e,2]é - [1,0]11 = Dy (16%)

Derivatives of Elements in Terms of Disturbing
Functions of Elements
Introducing the values obtained for the brackets in equations (15)

into equations (16) and solving the system for the derivatives give the
following form for the Lagrangian equations:

2a2
= - L2 17a
o tp (172)
- e2 _ e2
oo el -ef) p, -i4t=-C"p (17b)

e p € ua w

202T~H
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4o}

L ) (17¢)
I = —————=— D col I - - 17c
/ua(l _ e2) @ sin I
z
a(l - e%) 2a R
b, = " De + - Da (L(i)
- el ;
PN (LB S 1 T N (17¢)
e wa PR
~uall - ed)
D
g = I (17£)

sin I~/pa(l - e2)

Disturbing Functions of Elements in Terms of
Components of Disturbing Acceleration

Prior to the integration of equations (17) .t is desireble to express

the disturbing functions Dy, Dg, Dtp, Dyys Do, and Dy 1n more convenlent

form.

If s is any of the elements a, e, tp, w, %, or I, any of equa-

tions (13) may be written as

D, = A, g% + A, g% + A, %é (13a)

Tt is necessary only to eveluate Ox/ds, x - y,z for each element in
order to obiain useful forms of eguations (17) that may be integrated
(either formally or numerically). However, the ejuations will reduce to
a more convenient form if the Cartesian disturbing acceleration components
A, Ay’ A, are resoived inkto a new orthogonal set (fig. 2) as follows:

(1) a component normal to the orbital plane W, pos’tive when A, is

positives (2) a component rormal to the radius ard in the orbital plane
C, positive when meking an angle of less than ﬁ/Z with the direction
of motion; (3) a component along the radius R, positive when pointing
outward from the origin.

The analysis in appendix C determines the disturbing functions D
Dto’ D

a”

D Dy, and Dy In terms W, C, and R as shown in equations

e’ 6314

(18).
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b oo |_L-e€8 _
a |1l +ecosvV

e

3 .
Yo (- e e s
3
- [.E a_s(-lu_—e—ZT (t - tp)(l + e cos v)]C

l + e cos v

+
= (-a cos V)R + a(z——w-s—y-)(sin v)C

Dtp = - "a(l =5 [ e sin v)R + (1 + e cos V)C]

D = Cr
DI = Wr sin u

D$2=CrcosI—WrcosusinI

where v is the true anomely and u = v + w.

RESULTS

Introduction of equations (18) into equations (17) yields

e

a4 =

T ez Jﬁ [e(51n v)R + B C]

. - ﬁ{(sinV)R"’}‘[E"r_(l_—eZ)]c
K elr P

. = & _R - B - ;
tp =3 {[Zr £ cos v - 3e '/; (t tp)51n V]R

+[.Sl%f.(p+r)-

R [0

~up (t - tp)]c

® = ‘/E _C_OS_VR+_S£1_Y(1+£>C-£sinucot I)W
M e e 1Y P

Si:'I'Slnu W

+up sin I

(18a)

(18b)

(18c)

(18d)
(18e)

(18f)

(19a)

(19v)

(19¢)

(194d)

(19e)

202T-d
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i:l‘COSLl

Viw

where 1 1s che semilatus rectum. These results, together with other
Torms decrived from them, are given in table II.

W (1uf1)

Alternate Components of Disturbing Acceleration

Components of the disiurbing acceleration in the orbital plane may
be alternately taken tangent to the path T and normal to the path N;
T 1is positive in the direction of motion, and N is positive when di-
rected toward the interiocr of the orbit. Substitution in terms of T
and N for C and R by introducing expressions from table IIT gives
the following chenges in the derivatives of equations (19):

e = 2a % T {202)

2 a1
2(e + cos v)T - [%<l aEANVICES S V] N (20Db)

FiiEElQ[ T + — (2e + cos v + e2 cos v)N - ( rv_ sin u cot ;) ﬁ]
e pe ~/up

(20¢c)

o
.IH
o)

oo

—

(OB s

‘fﬁ'(ez + e cosv + 1)sin v

- 3(t - tp)(l + e% + 2e cos *v‘)]T + (g— ‘/% cos V)N} (204d)

where V is the velocity.

Elimination of (t - tp)
The guantity (t - tp) may be eliminated from equation (20d) by in-

troducing table I equations (I-96) and (I-87) for the cases e < 1 and
e > 1, respectively. The results for the two cases are

. a _fp 1 2 . eZ(e + cos v)
t.. = = - _—q - + + .
p v ‘/; 1 eZ{[e o€ 1 +e cos v sin v

3(1 + 22 cos v + e-
_D(_L 2e cos v e)E}T+('a_:f'éCOSV>N’ 0 <e <1 (2]—>

\/l - eZ



iz

whnere B 1s the eccentric anomaly, and

2
. a D 1 2 - e“(e + cos V) .
= = =l = + +
tp v ‘(: 1 - ed [; o€ 1 +ecosv ] Sy

W
= + + =
_ J(l Ze cos Vv € ) F»T + (_8% cos V)N R e > 1 (22)

Jef -1

where F = -iE in the hyperbolic orbit corresponds to E in the elliptic
orbit. Thus, F is imaginary when an elliptic orbit exists, and E is
imaginary in the case of the hyperbolic orbit. The result for e >1 is
identical to the result for e < 1, but with E replaced by 1F ard

i - e replaced by i~/e? - 1.

The value for ﬁp when e = 1 1is not directly evident as the

quantity (1 - e“) » 0 when e — 1. Equation (1%c) for t, may be

written as

2
; _ D z _cos v . e o
GP u(l - 62) [l + e cos Vv e s sin v pS (t tpﬂli

sin v 2 + e cos v v
+ - + = -t
[ e T o os v - oL *ecos v) ‘/p3 (t tp)]c (23)

Eliminating J-—i; (t - tp) from equation (23) with table I equation (I-95)
P
yields
2

. D 4 _cos v 3efsinly
Pl - 82)]\ 1+ ecosv e (1 - e2)(1 + e cos v)

v
3e sin v dv sin v (2 + e cos v)
e — IR+
1 - e@ 1+ e cos v 2 1+ e cosv

0

. 3e sin v 3(1L + e cos V) v o (24)

1 - eZ 1 - el l+ecosv

202T-H
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Using the relation

v
cos v dv _ 1 sin v
(1+ecosv)d 2(1-¢e?) [(1+e cosv)?
0
v
(l + 2e2)sin v _ Za av (25)
(1 -e2)(1+ecosv) 1-ce? 1 +ecosv
o)

v
o dv .
to eliminate / T+ & cos v from equation (24) yields
0

v

cos v dv cos VvV
- R
)2

5 e(l+ecosv

2
t.=2¢ |2 sin v
m

P (1 + e cos v)

0]

cos v dv - c (26)
(1 + e cos v)

+ g‘-(l-i-ecosv)
0

Equation (26) is now defined at e = 1, since

v
cos vdv sinv 1+ 3 cosv + costy

(1 + cos v)3 -5 (1 + cos v)°

0]

Hence, the equation for t, on a parabola is

. a >
t = P [2(1 + 3 cos v + cos®v)sin V]C

P 5u(1 + cos v)2
+ [2 - cos vV - 4 cosév - 2 cossﬂ R} (27)
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Derivatives of Alternate Orbital Parameters
The element "p" may be used in place of the element "a" as a variable
of integration. Similarly, the pericenter radius rp may replace &a or

p. As p, a, and T are similar elements, the guestion of which to

b
select is determined by numerical and convenience considerations.

Semilatus rectum. - Taking the derivative of p = a(l - e?) yields

p = a(l - e€) - 2eaé. Introducing expressions for & and €& from equa-

tions (19a) and (19b) yields
p = 2r ‘/gc (28)

or, in terms of T and N,

13=-2—P-[T + L e(sin v)l\il (29)
v p
Pericenter radius. - The equation for radius of pericenter 1s
ry = p/(1 + e), and its derivative is
Po= e (D - 1 &) (30)
P 1 +e P

Introducing expressions for P and & from equations (29) and (20b) into
equation (30) and simplifying yield

. 1 l -cosv
= = = =>° - + +
Ty VEBrp T o T + (r sin V)N] (31)
Mean anomaly. - Also, it may be desirable to use the mean anomaly M

in place of the element t Here, the distinction is significant in

0
that M 1is not an element and varies even on a two-body orbit. From the
familiar expressions M = n(t - tp) and n = ~/p/ad in table I, the

derivatives become

M= n(t - tp) + 1 - nty (32)
and
. 3 TR v
N= -=gf—&= -3 —=T (33)
2 a® -JMa

20219
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. =
where equation (20a) was used for a in equation (33). Now,

. 0
-nt_ = - =t
&> P
v 1 2 r cos v
=3t - t) —=T - = i~—-—-——-rsinv<e+i)'r+—-——1\l
D '\/Ha 7 as[l-ez ( ) re e

(34)

when ﬁp is taken from equation (20d4).

Intreducing equations {33) and (34) into equation (32) yields

. 2
M=n-£ [2<Sin V)(%Q'F%)T'l‘wl\i, (35)

Vv ae

¥t should be noted that M and M are both zero when e = 1 and that
M reduces to its two-body value when the in-plane components of the
disturbing acceleration are zero.

True anomaly. - The orbital parameter v, true anomaly, may be used
as an alternate to either the element tp or the parameter M. From

teble I equations (I-47), (I-18), and (I-24), Kepler's equation may be
written as

_ 1/- - 2 of ,/ - el aj
M = tan 1 L e¢ sin v - 1 ed gin v (38)

e + cos Vv 1l + e cos v

Taking derivatives in the disturbed orbit yields

M= V1 - et [Q(l - e2) - é(éin'ﬂ(E + e COS'Vﬂ (37)

-

(1 + e cos v)“

Solving equation (37) for v and introducing equations (35) and (20b)
to eliminate M and e, respectively, yield the result

. 2 .
. <] + +
- VYHD (2 in V)T _ Ze e“ cos v COS V i (38)

e Ve Ve(l + e cos v)

As in the case of M (eq. (35)), it will be noted that equation (38) re-
duces to the two-body derivative expression when the in-plane components
of the perturbative acceleration are zero.
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Table IV is a gqualitative summary showing how the components of the
disturbing acceleration affect the derivatives of the various orbital
elements and parameters.

Orbital Element Relaticns for a Circular Orbit

In a circular orbit the location of the pericenter 1s undefined.
Consequently, the elements  and t,, and the true and mean anomalies

v and M, which are related to the location of the pericenter, are un-
defined. Thus, relations involving w, tp, v, and M take on an in-

determinate form. However, any perturbation having a component in the
plane of the orbit will immediately establish the limiting values of w,
tp, v, and M in the circular orbit. The circular orbit expressions are

derived for the T, N system of resolution of the in-plane disturbing
acceleration components. The derivatives are also given in terms of the
C, R system in table IT.

True anomaly. - Taking the table I equation (I-117) for cos v,

0
cos Vv = =9’ e =20

and applying L'Hospital's rule give

(xp - pB)/x" (39)

COos Vv =

Substituting for p from equation (29), for € from equation (20b),

and for 7 from table I equation (I-80) [eq. (I-80) is also valid for
disturbed orbits] into equation (39) yields in the limit as e approaches
zero

2T
2T cos v - N sin v’

cos v = e =0 (40)

Equation (40) is valid if e =0 and e % 0. The latter condition re-
guires that an in-plane camponent of the perturbing acceleration exists.
Solving for sin v and cos v from equation (40) yields

sinv = ¥ ————ji—————, e=0 (41a)
~+/4T2 + N&
cos v = % 2T e =0 (41b)

202T-d
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where the upper sign gives the limiting value of the true ancmaly for
leaving a circular orbit and the lower sign gives the limiting value
when entering a circular orbit. Tt can be seen from equations (41) that,
if a perturbing force is arranged to force an initially elliptical orbit
through circular, the value of true anomaly will make a step change of

1 radians.

Argument of pericenter. - The argument of pericenter is determined
from table I equation (I-176):

D= U -V

Time of pericenter passage. - In a circular orbit the time from
"pericenter," t - ty, equals the arc length to "pericenter" divided by

the velocity; that is,

v, e=0 (42)

Derivatives of Orbital Parameters in a Circular Orbit

Semilatus rectum and semimajor axis. - Equations (29) and (20a) for
p and & reduce directly to the same expression when e = O:

p=a=2=T, e=0 (43)

Eccentricity and radius of pericenter. - Using the limiting values
for sin v and cos v from equations (41) in eqaations (20b) and (31)
for é and fp yields the following:

/472 + N2, e =20 (44)
r_ = % (27 ¥ +/4T2 + N2), e

where again the upper signs give the limiting valuies of ¢ and fp when

o

I

I+
<ij+=

(45)

il
o

leaving a circular orbit and the lower signs are for entering a circular
orbit.

Argument of pericenter. - Equation (20c) may be rewritten to give
w=£l<2‘l‘ sin v + = N cos v)+£(2+ecosv)N- I‘z_sinucotIW
Ve P P ~/up

(46)
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Substituting the following relations from table I

sin v = '/g-g (47)

cos v = l(P- - ) (48)

e\r

gives the following result in the first term of equation (46):

iZT sinv+£Ncosv>=—l—[BT ‘/§f+1\1(l—£)]
e D 2 i} p

e

Applying L'Hospital's rule and using equations (zob), (29), (43), (47),
(48) and equations from table I and noting that ¥ = -N in the disturbed
orbit when e = 0, it is found that

2 P_'+N1_£) . .
LimitT'/;r ( p) _v2 _ (ere + WE) , fm - NI
eZ —21' 4

e -0 T2+N2 4T2+N2

Thus, & reduces to the following for a circular orbit:

2 2 2 . >
. . -
m—l[g + 2112 N2+VTN2 NTZ—(sinucot I)W|, e=0
r 4T¢ + N 4T% + N (49)
Time of pericenter passage. - Equation (21) may be rewritten to
give
1-; == ‘/‘E L2l sin v s:.n L+ I cos v] 4 SLsiny sinzv [5 - e(e + cos v) E]
1 - e? p 1-e p
_BE(1 + 2e cos v + e2) i (50)

(1 - e2)°

Again, the limit of the first term of fp is

ZTSinv*i-chosv
Limit \ 1 - e2 P _VE N(6T2 + Nz) . V(TN - NT>
e -0 e 2r 4TS + N2 AT? + N2

2021-d
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and %D for a circular orbit reduces to

. . . 5 5
g oL@ N x BT" 4 N oy oz, e=0 (51)
P2 Vigr? 4+ y2/  ve\ar? + it
Mean anomaly. - Equation (35) may be writter. as
. 2
2(sin v)T + = (1 - e°)N cos v
. /1 - e2
M=n - L = 2 + 2(22 sin V)T
v e P
(52)
The 1imit of the indeterminate term in equation (52) is
o sin v + = (1 - e?)N cos v 2 2 2
Limit e v N(éT + N7\ 2T
e -0 e ar 4;112 + N2 /4:|I|2 + Nz
.y TN - NT
4TZ + NG
and M for a circular orbit becomes
. Vv |, NfeT2 + N2 2TN ™ - NT
M=71n = — + = s - - (55)
er V<;T2 + N2> v a2 + We  ATZ + N

where the upper sign is for leaving a circular orbit and the lower sign
is for entering a circular orbit.

True anomaly. - Equation (38) may be written as

v = - 1L 2T sin v + LN cos v - = (2 + e cos v)N + :IEE
e P Vp ré

which yields in the limit as e approaches zero

2 2 . .
v N<2T + N ) I i e -0 (54)

V=g - ,
4T + 3@

ar vV 4T2 + N2



Application of derivatives for circular orbits. - If the disturbing

force is appiied in a constant direction relative to the velocity direc-
tion, it may be noted that

TH - NT = O

even *f the magnitude of the disturbing acceleration is varying. Thus,

if the direction of the disturbing acceleration is fixed relative to the
velocity, all terms involving N and T will vanish in eguations (22)
to (54). Similarly if the direction of the disturbing acceleration 1s
fived relative vo the radial direction, all terms involving C and K
will venish from the equations in table IT.

The equations for circular orbits given in the preceding sectlons
and in teble IT are completely valid only for circular orbits. However,
certain of the equations will be found to be sufficiently accurate for
near-circular orbits and can be used as the basis of approximate egua-
tions.

CONCLUDING REMARKS

All the results derived herein for the perturbation derivatives of
the various orbital elements and parameters are listed in table ITI.
Table III conteins exvressions for the orthogonal system of components
C, R, and W in terms of the Cartesien components of the disturbing
acceleration Ay, Ay, A, in the 0X, 0Y, 0Z system. It also contains

equations interrelating the C, R and T, N systems of the in-plane
components of the disturbing acccleration. Teble I is a collection of
various forms of the two-body equations that also apply to the osculating
orbit.

As illustrated for D, fo, M, and Vv, perturbation derivatives of

other alternate elements and parameters may be derived from the expres-
sions in tebles I, II, and III. Other integration variables tha: may

be useful for the solution of problems in orbital mechanics are suggested
in references 2, 3, and 4.

Selection of the best set of orbital elements or parameters for a
sarticular tyoe of special perturbation problem in orbital mechanics de-
pends on the nature of the problem. However, 1t is expected that examina-
tion of the derivatives given herein will help to indicate which param-
eters should be used for a specific problem.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, August 30, 1961
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

By, hy

b

Eg

component of disturbing acceleration

semimajor axis of conic section, negative in hyperbolic case
semiminor axis of conic section

perturbative acceleration in circumferential direction
constant of integration

disturbing acceleration function for element s,
ox o) oz

+ A, <L+
Ax ds Ay ds Az Os

eccentric anomaly
energy per unit mass
eccentricity

used in hyperbolic orbits to correspond to eccentric ancmaly
in elliptic orbits, F = -iE

component term of disturbing acceleration includes forces
due to all except gravitating bodies not located at prob-

lem origin

aS/Z(E - e sin E)
% Hl/zal/z(BE + e sin E)

angular momentum per unit mass equals twice the rate of
description of area in orbital plane

orbital plane inclination
unit imaginary number, 1/:I

c X o OY
Xys'f‘Y&-



2z

Q,5

4,5

Rg

gravitational constant

mean ancmaly

gravitating body mass

gravitating body mass at problem crigin

object mass

perturbative acceleration in orbital plane in direction
normal to veloecity, positive when directed toward interior
of orbit

mean angular orbital motion of cbject, 2m/P

orbital period

semilatus rectum, a(l - e2)

denote functions defined for convenience

any pair of orbital elements

perturbative acceleration in radial direction, positive
outward

range on surface of sphere intersected by an elliptical
orbit

radius from origin to object
radius from origin to disturbing body

pericenter radius, the minimum distance from central body
to orbit

radius of sphere

perturbative acceleration in direction of velocity
time

time of pericenter

complex variables, x + iy, % + iyl

argument of latitude, angle measured from ascending node to
cbject radius in the direction of motion, u =V + W

202T-d
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X,Y

Xy¥,2

alJBlle

as,B2,T2

Subscripts:

a

23

object velocity or complex variable, x - 1y
complex variable, X - iyl

true anomaly, angle measured from pericenter to object radius
in the direction of motion

perturbative acceleration normal tc orbital plane, positive
in the direction of axis O0Z

denote object coordinates in the O0Xz, 0¥z axis system
where 0Xz colncides with pericenter radius and OYz lies

in orbital plane (see fig. 2)

denote object coordinates in the O0OX, 0Y, 0Z Cartesian
system (see fig. 1)

direction cocines of the OXz axis referred to the O0X, 0¥,

and O0OZ axes, respectively

direction cosines of the 0¥z axes referred to the oXx, OY,

and O0Z axes, respectively
distance from object to any perturbing gravitating body
natural logarithm base

gravitational constant equals acceleration of object at unit
distance from MO due to Mo’ o= kZ(MO + 1)

used in hyperbolic orbits to correspond to n in elliptic
orbits, v = ~in

path angle, angle between circumferential and velocity di-
rections, positive clockwise

argument of pericenter, angle measured from ascending node

to pericenter radius in direction of motion
longitude of ascending node

apocenter conditions in table I; elsewhere, disturbing func-
tion of semimajor axis

disturbing function of e
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I disturbing function of I
i=1,2,**+,n disturbing gravitating body number
J=1l,2,+++,6 indicates jth equation of a set

k=1,2,+++,6 indicates k%M orbital element

p pericenter conditions

S conditions of spherical surface

tP disturbing function of tp

XY 5 Z indicates extension of equations in x to a system in-
cluding y and z

X,¥,2 components taken about or along an axis

w disturbing function of

1,2,3 coordinate system and coordinates in them

Q disturbing function of &

Superscript:

indicates derivative with respect to time

202T-4
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APPENDIX B

WHITTAKER 'S DERIVATION OF THE GENERAL FORMULA
FOR A LAGRANGIAN BRACKET

The following development is applicable to the equations of any
osculating orbit. It is similar to that given in article 5-16 of Smart
(ref. 1).

Let s and q be any two of the six orbital elements and x, y, z
be the object's coordinates; then equation (12) may be written as a sum
of Jacobians,

_xx) L (roy) L (2,2)
[s,q] = Gs,0)  (s,a)  Ts,a) (B1)

where, by definition,

(x,x) _Ox dx Ox OX
(5,0) = 35 3q " 3q 35

and so forth, for the other Jacobians. The cobjective is to transform
equation (Bl) into an expression of the same form but involving only ex-
plicit functions of the orbital elements. Define

I

5 ig—’;+3}%‘é+é%§ A

end } (B2)
. Ox -3 - Oz
ik
Then,
38 3
(5,0l = 52 - 52 (83)

Let the OX, 0Y, 02 axis system in figure 1 be fixed to some reference
astronomical line and plane such as the mean equinox and equator of
1950.0. The orbit plane is projected on the celestial sphere. The
equatorial longitude of the ascending equatorial node referred to the
vernal equinox is then dencted by &, and the inclination of the orbital
plane to the equator is I. Rotate OX and OY about O0Z through the
angle & to obtain the axis system OXl, OYl, OZl. Coordinates of the
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object in the O0X, OY, 0Z system (x,y,z) are given in terms of those in

the OX,, OY;, 0Z, system (xl,yl,zl) by
X = X; cos Q - ¥y sin R
y =% sin @ + y; cos Q (B4)
Z=Zl

It is convenient to introduce complex variables by the following defini-
tions:

i

U=x+ iy, V=x -1y

and (B5)

Ul = Xy + iyl, Vl Xy - iyl

where 1 = 5/-1. Then, by using equations (B4) with the definitions in
equations (B5), it may be shown that

U= Ul(cos L+ i sin Q) (B6a)
V = Vy(cos & - i sin Q) (B6b)
or
U= Uj_ozis2 (B7a)
v = Vle'ig (B7b)

The time derivative of equation (B7a) and the partial derivative of equa-
tion (B7b) with respect to s are, respectively,

ov
= e'iﬂ(x-l— - 1V %%) (B8)

Multiply equations (B8) together to obtain

iQ

O/IO/
n|<g

U = ﬁle and

ov
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Taking the real parts of ejquation (BY9) yields

ox 3
3 1 Y1 . 30
5% =

>'< %;f T i R e e (310)

But it is seen from equations (I-33) and (I-44) of the two-body orbital
relations in teble I that x;¥; - X;y; = h cos I, which is the orojection

on the 0X; - OYy; plane of twice the rate of description of area in the
orbit plane. Hence, from =quations (B2) and (BLO)

, ox3 ., 91, 911 a0
8=% 5tV 557 "4 5T +hocos T 53 (B11)

as z = z; from equation (B4). Now, rotate the OY; - OZ; plane about
0X; through the angle I to obtain the axis system OX,, 0Yp, OZs Thav-
ing obJject coordinates (xz,yz,zg), so that the OXp, - 0Y, plane coincides

with the orbit plane. Then, by analogy with eguation (B1O),

. ayl . 521 . aYz . 522 . . oI
VSTt s = Ve tiags (B - 9p2p) 53 (12)

But, since xj = xp and zp =0, equations (B11) and (Bl2) may be used
to yield

3 3
S = x5 523 + ¥o 523 + h cos I %% (B13)

Now rotate the O0X, - OY, plane in the orbital plane through the angle
®w to obtain the axis system O0X5, OYz having ooject coordinates (X,Y)
so that OXz lies on the pericenter. Again, by analogy with egquation
(B10) it follows that

. ox . vy ) . ) )
X2§S—2+Y2§§=Xg§+§(§%+(m'n)%§ (B14)

But XY - YX = h; thus, use of equations (Bl3) and (Bl4) yields

© 0X © Y Aw aQ
=X 5o +Y - +hso+ So
5 X 5o Y ” h s h cos I - (B15)



S ) QNN ) 4 . i
Let J =X e + Y ggg thern substitutions from table I equations

(1-144), (I-151), (I-158), and (I-163) may be Introduced to cbtain

J _ 42 9B Do\ a(ein T . da . e
= a% 57 (1 - e cos“E)+ a(sin E)(L - e cos E){e S tasg

.

) (B16)

where E 1is the eccentric anomaly.

The time derivative of Kepler's equation (egs. (I-47) and (I-52))

B(1 - e cos B) = n = ul/2a-(3/2) (B17)

where n is the mean angular motion in the orbit. Eliminate E in
equation (B16) using equation (Bl7) to obtain

J = ul/Z al/z(l + e cos E) OF + a'(l/z)e sin E o2 + al/2 sin E ge
ds Js ds

which can be written as

_oafe|l Loz OE 3 _(1/2)(m - e si da
J = u [ 5 @ (1 - e cos E) S5 -7 @ (E - e sin E) S
1 .1/2 OE . 1 _-(1/2). Loy Oa
+ = + + =2 + e gi
5 a (3 e cos B) Ss 7 (3E e sin E) S
1/2 .. de
+ & sin E SE]
1/2 3 /2y
_ B 3/2(m - - L e /200 + o o ]
J = §§[a (E - e sin E)] 5 é—s—[a (3E + e sin E)
1/z d D
= . K& vg-+ i
J 7o Js  Os (B18)
where H = % ul/zal/z(BE + e sin E) and
g = aS/E(E - e sin E) = na5/2(t - t) = ul/z(t - tp). Thus,

D

Se ul/z _BTSP_ (B19)
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Introduce equations (B19) and (B10) into eguation (B15) to obteir

3(-t.) 3
_ P’ OH , 1 9® o o Los oQ -
72 Ts  Tos TREs TRl (B20a)

A similer derivation will show that Q 1s given by

5(-t ) S >
~ o g) H ow R
9 = - ca —;—C—lL- + gq— + h 5?{ + h cos I 5‘5 (BZOb)

Using equations (B20), eguation (B3) for Lagrange's brackets may now be
written as

3 3 dw dh  Oh dw
el = 5 (i) () - 55 (s %) TS s - 5

+ 32 d(h cos I) o(h cos I) 29
Ss aq - o5 Sa

(B21)

Using Jaccbian notation, the general expression Jor & Lagrangian bracket
as obtained by rewriting equation (B21) is

o, -
[s,q] = ﬁ—Y——Y‘E,qZJ + H‘;’;? + -—T—T—(Q’hsfgs 9) (B22)

Substitution of h = pa(l - e2) into equation (B22) gives the expres-

sion from which the Lagrangian brackets will be =2valuated for the chosen
elements

(-tp’—%%> + (w,w/ua(l - ez>) + (Q, pall - e?)cos 1)

[s,a] = =57 (5,0) (5,0)

(B23)



APPENDIX C

DISTURBING FUNCTIONS OF THE ELEMENTS IN TERMS OF
COMPONENTS OF THE DISTURBING ACCELERATION

By the application of spherical trigonometry it is seen that the
components A, Ay, A, of the disturbing acceleration referred to OX,

0Y, and OZ 1in figure 1 are given in terms of W, C, and R by

A = R(al cos v + a, sin v) + C(a, cos v - o sin v) + W sin @ sin I
(Cla)

Ay = R(By cos v + B, sin v) + C(Bs cos v - B sin v) - Wecos & sin I

(C1b)
A, = R(ry cos v + ¥, sin v) + C(Y2 cos v - ¥, sin v) +Wecos I
(Cle)
where
@} = cos w cos & - sin W sin @ cos I h
ag = =-sin ® cos Q - cos w sin & cos T
By = cos w sin Q + sin w cos Q cos I L (c2)
o = -sin W sin 8 + cos wcos & cos I
¥ = sin sin I
To = cos w sin I

./

Geometrically, aq, By, Ty are the direction cosines of the pericenter
radius, and agp, Bs, Yo &are the direction cosines of the circumferential

direction at pericenter referred to O0X, OY, OZ, respectively.

To obtain Ox/ds, x - y,z where s is any of the orbital elements,
the coordinates of the object must be expressed in terms of the orbital
elements. The (x,y,z) coordinates in the system O0X, OY, OZ “may be ex-
pressed in terms of the orbital elements and true anomaly v as

2021-d
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a(l - e2) .
= ——— . +
AR — (ag cos v + ap sin v) (C3a)
a(l - e2) .
Y = T ¥ e eos v (B cos v + By sin v) (C3b)
2
a(l - e%) .
O e - m——— +
2= i o aes Y (¥q cos v + Y5 sin v) (C3c)

when equations (I-140), (I-147), (I-154), (I-72), and (I-104) from table
I are used.

Determination of Dy, Dg, D¢
p

From equations (C2) it is seen that the derivatives of o, B, and

Y with respect to the elements a, e, and tp are zero. Equations

(C3) are not explicit in terms of the chosen set of orbital elements,
for sin v and cos v are seen to be functions of a, e, and tp by

the following form of Kepler's equation obtained from equations (I-18),
(1-24), (I-45), (I-47), and (I-52) of table I:

2 as 2 o
(+ - tp)ul/za'B/z - tan"l(g/l - e“ sin v) - e 1l -¢e%“ sinv

e + cos v 1l + e cos v (04)

Because of the transcendental form of equation (C4), explicit expressions
for sinv and cos v 1in terms of a, e, and tp cannot be obtained.

However, the required partial derivatives may be obtained according to
the following relations if v 1s regarded as an auxiliary variable:

dx [ax] dx Ov

g: S—g +§;f-g-s-, X > Y¥,2 (CS)

for s equal to a, e, t, where [3x/ds] in brackets indicates that the
derivative is now taken only so far as s appears explicitly in equa-
tions (C3). The derivatives from equations (C3) are

a(l - e2)
1+ e cos v)2

g% = - ( [@l sin v - az(e + cos‘Vﬂl, Xy = ¥,B3 2,7
(ce)

Ox 1 - e .
= ’ P IP3 2y
Sal = TF 5 cos v (al cos v + %y sin ) X,0 = Y,B3 Z,Y (c7)



3z

+ + et
al2e + (cos V)(lz e?)] (cnl cos v + ay sin vy, X,a = ¥iB3 2,V
(1L + e cos V) (c8)
3x
EEE; = 0, X > ¥,2 (c2)

and from equation (C4) the derivatives are

ov 3 U z
o o2 g (1 + e cos V)t - L) (c10)
& 2 ¥a5(z1 - e2)° 7
v sin v + )
o= 1 .2 (2 + e cos V) (c11
ov v 2
= - (1L + e cos v) (ci2)
Stp a3(1 - 8)°

Combining equations (C6) to (Cl2) according to equation (C5) yields

ox

5; =

ox

e

1 - e
1 +e cos v

(o7 cos v + a, sin v)
1 2

+
noji

B :
TR (t - tp)[cxl sin v - az(e + cos v)],

X,a = YB3 Z,7 (Clsa)

a[Ze + (cos v)(1 + ezil (

% - __E____;_ [@l sin v - az(e + cos v)], X, = ¥,B5 2,7
P

@, cos v + o, sin v)
(l-i‘ecosv)2 1 2

- g sin v 2+ ecosyv [alsinv-qz(e+cosv)],
(1 + e cos v)

X,u = y,B; z,v (Cl3b)

(Cl3c)

20874
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The desired results for D,, D and Dy  are obtained by combining

e’
equations (Cl) with equations (Cl3a), (Cl3b), and (Cl3c), respectively,
according to equation (13a). Note that the following common factors in
the process have the values shown:

Coefficients of terms containing R:

(al cos v +ta, sin v)E + (ﬁl cos v+p, sin v)2 + (Tl cos v+ Y, sin v)e =1

(a e + COS'Vﬂ

1 1 2<

cos v + a, sin V)[l sin v - a
+ (Bl cos v + 82 sin V)[Bl sin v - Bz(e + cos Vﬂ
+ A si b i Vo= + = - i
(Tl cos v + T, sin f)[rl sin v Yz(e COS'Vﬂ e sin v
Coefficients of terms convaining C:
(“2 cos vV - oy sin v)(al ces v o+ Ao sin v)
+ (32 cos v - By sin V)(Bl cos v + Bo sin V)
+ (¥, cos v - v, sin v)(T1 cos v + T, sin v) =0
(“2 cos v - ay sin V)[@l sin v - as(e + COS'Vﬂ
+ (BZ cos v - By sin v)[Bl sin v - Bz(e + cos vﬂ
+ (Y2 cos v - Ty sin v)[Yl sin v - T,(e + cos vﬂ = -(1 + e cos V)
Coefficients of terms containing W:

(2] cos v + as sin v)sin @ sin I - cos & sin I

. (Bl cos v + B, sin v) + (Yl cos v + v, sin v)cos I = 0O
Exl sin v - az(e + cos \rﬂ sin @ sin I - cos Q sin I
. i - i - + =
[bl sin v Bz(e + COS‘Vﬂ + 51_51n v rz(e cos VH cos I =0



oA
L

The simplified results then are obtained as

D = _;L_ljii__. ) S (t I’ )e sin vIR
a  |L+ecosv 2 V¥Wad(1 - e2) ‘o *
: £
i ) —F (t -t )(1+ e cosv)|C (cla) o
2 ad(l _ eZ) D N
O
D
2+ e cos v
= (- + ' L = - -
D, = (-a cos v)R + a(sin V)(l ", V)C (C15)
D, =- g — = [(e sin v)R + (1 + e cos v)C] (c16)
p a(l - e%)

Determination of D, Dg, by

The disturbing functions of w, £, and I are cbtained by combining
the derivatives of equations (C3) with equations (Cl) according to egua-
tion (13a) after equations (C2) are used to eliminate «, B, and ¥ in
equations (Cl) and (C3). As this work is rather long but very direct, it
is omitted. Results are:

D, = Cr (c17)

Dp = Wr sin u (cis)

Dy = Cr cos I - Wr cos u sin I (C19)
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TABLE TI. - EQUATIONS FOR THE TwO-BODY ORBIT

(a) Classification of orbits?

Type of Energy, Angular Eccentricity, | Semimajor | Semilatus
orbit Eg momentunm, e axis, rectum,
h a P
Circle Bg = -u/fer| n =1V e =0 a=r p=r
Ellipse <0 £ 0 <1 > 0 >0
Degenerate < 0 =0 =1 >0 = 0
ellipse
Parabola =0 % 0 = 1 = o > 0
Degenerate =0 =0 =1 = =0
parabola
Hyperbola > 0 £ 0 > 1 <0 > 0
Degenerate > 0 = 0 =1 < 0 = 0
hyperbola

&The degenerate conics included for completeness are straight
lines.

The two-body equaticns describing motion on & conic section may be
wvritten in myriad forms. The following particularly useful equations
have been selected for tabulation without derivation.

It is assumed that e and r are never negative. Special cases
and restrictions necessary Tor real equations are indicated. It is
also obvious that many of the equaticns become indeterminate or un-
bounded for certain conditions. (Symbols are defined in appendix A.)




TABLE I. - Continued. EQUATIONS FOR THE TWO-BODY ORBIT

(b} Two-body eguations

Semimajor axis Eccentric anomaly {concluded)
I-1: 8= —2 5 I-19: =r sinv | e<1
1-e EVi- 2
2 r(l + e cos v)
1-z = > T-20: sinh F=-X_8in v e>1
1- e 8 42 _ 1
I-3: r
= —, e <1 . _ et cos v
l-ecos E I-21: ”OSE‘W’ e<1
-4 [ S,
T4 =1 - e cosh ¥ e>1 I-221 =L cos v+ e e<1
a
I-5: I r
w(l - ez) I-23¢ cosh F = — cos V + ey e>1
I-e 1 I-24: tang oYL atny e<1
(2/r) - (VB/u) e + cos v~
E - e v
-7 B ~-251% = = _
I =ifﬁ’ e <1 I-25 tanz l+etan2, e<l1
T, + T _ F - e ~ 1 v
I-8: - P2 a I-26: ‘cra.nh2 e+1tan2’ e>1
Semiminor axis Energy per unit mass
I-%
b = ~/ep I-27: Eg:—v;-i‘-
r
Eccentriclty
I-281 = - ZLP (1 - &%)
I-10: e = ‘/1 -2
a
"
-292 = - —
hz -2 z2a
I-11: = 41 - —
m
I-30: = = %, e= 0
1-12: - 41 + nf(ye 2
TR r Angular momentum per unit mass, or twice
rate of description of area
I-13: Y AN P(v;_ R _21:)
I-31: hy = y& ~ z¥
- 1
I-14 = === v(f l) I-323 hy = 2% - x2
I-33: h = xy - yX
1-15: _Ta~Tp . z . s
ry, + I - -
a D I-341 h_hx+h.y+hz
Eccentric anomaly I-351 = r4u2
I-16: E = iF I-361 = up
I-17: F = -iE I-373 = pa(l - e8)
![ _ o2 I-38: = ur, e =0
I-18: sin E = ll+ eec0213 7, e<1l
I-39: h = hy, I=0=Q
I-40: = rpVp
I-41: =1V cos ¥
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TABLE I. - Continued. EQUATIONS FOR THE TWO-BODY ORBIT

() tontinued.

Two-body equations

Orbital inclination Semilatus rectum {concluded)
2 2
hy + 2r
T-42: tan T = 1= hy, 0<I<x I-641 P == r'e
n, 4z T+ Tg
h)z( N h.?, I-653 = r{l + cos v), e =1
T-43: gin I = T
! I-661 = 2rps e=1
z I-671 = T, e =20
I-44: cos I = =
Period
Mean anomaly/
2x
I-451 M=n(t - t), e<1 I-68 P = e<1
I-463 = v(t - tp), 2> 1 3
I-59: = 2ngqlel, e<1l
I-47: = E - e sin E, e<1 a
T-481 = -F + e 5inh F, e>1 Redius
I-49: M=n _ U
I-70: T=T¥ecos v
Mean angular motion
I-711 = Va? + yz + 22
M
I-501 n= y e <1 N 2
t-tp 1-721 -8l - &)
1+ ecos v
2r
I-51 = = e <1
P’ T-73: = a(l - e cos §), e <1
I-52: - LS e <1 I-741 = &(l - e cosh F), e>1
a
1-751 - (1 + tan? 3), e=1
P 2
" 243
I-53: = —:-S-(l-e), e<l
> I-761 = Dy e=0
I-77: =V einy
I-541 v o= Ho(e2 - 1)7, e>1
3 XX + yy + z%
I-78: = -
I-55: = -1in
XX+ yY
Semilatus rectum 179t === I=0=28
- = - el
I-56: p = a(l - ) T-80: = Jg e sin v
I-57: = r(l + e cos V)
e e CoB V
-81: T —————
I-58¢ = bé/u = =T
I-59: = rié/u Badius at pericenter
- M 2 o - - P
I-60: =v2(l+e + 2¢ cos V) I-821 Tp s
a 2 I-831 = 28 - rg
1-611 Lozl - et <1
T - € cos B N I-841 = all - e}
1-621 o b(1 - e?) I-85: =2 e=1
2(u/r) - V@
Radlus at spocenter
I-63: = 1 - e e<1
vnz ( ) I-86: Tp = —2
1-e
I-87: =28 - Iy
I-88: = a(l + e)

3T
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TABLE I. - Continued. FEQUATIONS FOR THE TWO-BODY ORBIT
{b) Continued. Two-body equations
Range (of ballistic missile) on sphere
of radius rg 1ntersected by an
elliptical orbit
I-89: Rg = 2rgln - vg), 0< vy <t
=11
I-90: = 2rg {® - cos [;(r% - 1)]
Time of pericenter passage
I-91: M e <1
n
T-923 E - e"sin E, e <1
~F - e sinh F
1-93: e e>1
v
v
I-94: ‘/E f av
H o {1+ e cos v)z
v
3
95: D~ 1 dv e sin v
I-95: w by D2 l+ecosv 1+ ecosvy
- o]
3
I-96: ‘/;3—— ] RS, . | e <1
L S 1 - <2 + e cos v
3,
1-97¢ pr_1 > F _lesinv X e>1
K1 _e 2 1 + e cos v
1-981 \/E; ——2tan-1(yl-emx . _esinv N
ul_ezm l1+e 2 l1+ecos v}
1.99: 3 1 1 10g (e 1+ +fe-1tenv/ez\ _esinv o> 1
b1 - el ‘/ez-l e+ 1-+fe -1 tan v/2 1+ e cos v|
p3 1{(2 + cos v)
I-10Cs T3 sin v{, e =1
B (1 + cos v)%
2 ﬂ/z TR o a2 ‘ 2
I-101: - i3 tan-1|MHEx - ho(n rv)*'\/;“'rv)-i‘, e<1
2u -1V r(a2u - rve) rryau - rv2
I-102: i B logl;'r\lrvz- 2 + ~/T{rve- 1) - Yulr- nlou - rv?) o
: 5 : -
2u - Vv r(rv? - 2p) ‘_rr rv22p - ~/T(rv2- u)+ VuPr - he(zp —rv2)
2 2
r h h
I-103: F (2 - u—r)é + pres e =1

30eT-d
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TABLE I. - Ccntinued. EQUATIONS FOR THE TWO-BODY ORBIT

(b’ Continued. Two-body equations

Argument of latitude (same as polar angle)

True ancmaly (concluded)

1 + e

I-1041 = v 4+ -121: Y e E
u v w I-121 tanz l_etanz, e<l
I-105: tan u=%, I=0=28 1-122: e+ 1 tanh F, e>1
b e -1 2
1-1063 _zsinT+ (y cos @ - x sin R)cos I 1-123; tan v = Y/X
x cos @+ y sin Q
] 3 = p
I-107: S/ T-lzds v r%
ra
I-125: = h/r?
1-108: =Y cos ¥
T I-126: =u
True anomaly
_— I-127: .
I-109: vV=u-+-ow
. Velocity
I-110: tan v = Jg p—”_”—r—
I-128: V2 o %2 4 52 4 52
hrr
I-111: = —— .
n? - ur T-129: = ¥2 + r2g2
1112 _h{xk + y¥ + 22 I-130: = ¥8 4 pBiE
hz - ur
. I-131: o
I-113; sin v = ﬁ z T
ue
I-1323 =% (1 + e + 2e cos v)
2
1l - e* sin E
I-114: "I -ecos E ’ e<1 s 1 . e
I-133: = pl= - —
T D
I-115: =2 Y1 - e sin &, e<1
r 4 1
I-134: = pfl - _)
. r &
I-1161 - -Ye —lsinhF, e>1
1 -ecoshF I-135: =5, e=0
I-117: cos v = %(% - ) v2 M 2
I-1361 =5 (2+el
I-118: = TC_OE_E.:__SE, e<1 r
T e ees I-137: el
p Ta * Tp
T-119: = & (cos E - e), e <1
T
I-138: V2 =E - e?
cosh F - e
1-120: *T-ecoen® 71 .
- R _ %
I-139: =
Ty Tg + Tp
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TARLE I. - Continued. EQUATIONS FOR THE TWO-BODY ORBIT

{b) Continued. Two-body equations

Rectangular coordinates
I-1401 x = r(cos u cos & - sin u sin 9 cos I)
I-141: =T CO8 U, I=0=8
I-142: X=1 cos Vv
I-143: = x(cos w cos 8 - sin w 8ln & cos I) + y(cos @ 8in R + sin o cos @ cos I) + zsinwsinI
I-144: = a{cos E - &), e <1
I-145: = a(cosh F - e), e> 1
I-146: = rp(l - tan? %), e=1
I-147: vy = r(cos u sin & + sin u cos 2 cos I)
I-148: = r sin u, I=0=24
T-149: =1 8ln v
I-150: = -x(sin w cos R + coB ® 5in 8 cos I) - y(sin w sin & - cos w cos R cos I) +y cos wsin I
I-151: - a\l - € atn E, e<1l
I-1521 = -ayfe? - 1 sinh F, e>1

v

I-153: = er tan e e = 1
I-154: z =r 8in u 8in I

Velocity components
I-155¢ X = - J—:;[sin Q2 cos I(e cos w + cos u) + cos 2(e sin w + sin u)]
1-156; =—&(esinm+sinu), I=0=1
1-157: X=- ‘/E; sin v
I-158: = -af sin E, e<1
1-159: = &F sinh F, e>1
I-160t y = JE[cos Q cos I(e cos w + cos u) - sin (e Bin o + sin u)]

P
I-161: = JE(& cos w + cos u), ITweO=2
by

- Y e
I-162: Y= 45 (e + cos v)
I-1€3: = ayl - e E cos E, e <1
I-164t = -aVeZ -1 F cosh F, e> 1
I-165: 7 = sin I(e cos @ + cos u)

Y

202T-d



E-1202

CM-6

TABLE I.

- Concluded. EQUATIONS FOR THE TWO-BODY ORBIT

(b) Concluded. Two-body equations

Path angle
I-166: tan ¥ = £
rv
I-1671 _ Xk by 4oz
h
e gin v
I-168: “T ¥ e cos v
I-169: =Z sin v
P
r
I-170: sin ¥ = 7
XX + yy + zZ
I-171s = ™
I-172: = e 8in v
V1 + e + 2e cos Vv
I-1733 cos ¥ = IV
\'
h
I-174: =7
1-175: - l+ecos8 v
\/l+e2+2e cos Vv
Argument of pericenter
I-176: W=u- Vv
Ascending node
hx
I-177: tan @ = -_h;
hX
I-178: sin = ————
Yo7 + nZ
I-179: cos 8 =

Ty
‘/h2 + n
x "y

41
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TABLE II. - DERIVATIVES OF ORBITAL ELEMENTS AND PARAMETERS®

(a) Time derivatives of orbital elements due to

perturbations

Semilsatus rectum
= ZrJ.E C
u
= 2 EE{' + (E e sin V)N:,
' 1Y

g
|

<R

c, e =20

<R

Eccentricity

[¢]
"

= 1l2(e + cos V)T - (f sin V)N]
v a

- i%’\[zmz + W2, e=0
=i%v402+32; e=O

¢ ‘{_-L—Ii {(sin V)R + %[2 cos v + e(1 + coszv)]c}

Argument of pericenter

o plsin V(l + }‘_)C - (EP_S__V)R - (-l: sin u cot I)W ’
" e P e p

0]

- E[28In Vg X (2e + cos v + €& cos V)N - V_ sin u
A e pe /PM.
. » 2 2
=l+M+iNM-(sinucotI)w, e =

V. ChR - &E 1[  me?

2r

2

-= + (sin u cot I)W|, e =0
sc? + B8 V[ac? + R ]

£ 0

cotI)W, e # 0

amy - N7 = 0 if T/N 1is constant, and CR - RC = 0 if C/R
However, T/N and C/R are never both constant at once.

is constant.

20gT-H
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TABLE II. - Continued.

(a) Continued. Time de

perturbatlons

43

DERTVATIVES OF ORBITAL ELEMENTS AND PARAMETERS

rivatives of orbital elements due to

Tme of perlcenter

c

cte
d

1
’_l
1=
[0]

™D
=
—
Mg
TS

[a il
Ll s

¥

K

it
<3+
=
e
}—J
=
0]
™o

2 2
E—-{[(sin v)(———--2 re _ZIc
M e a

—[2ecosv+§.c’_s_v—3+£+3eE_Siﬂl]R, 0<e<l
e & ‘,l_ez

The results for ¢t for

P
0< e<1l, but with E replaced by

= {[Z(Sin V)

. pZ

5u(l + cos V)

o8 Vv
-—e-——) - 3(t - tp)e sin V]R

[Zr(sin v) (e +%) -3(t - tp)Vz JEE]T + (—I-‘%E-—V)N},

_J_——le“’cos")sinv—sﬁivz = ]T

e > 1 are identical to the preceding results for

J_E.S_iz—‘f(l+§)-3(t-tp)§]c}, Ofe#l

ossv)—?s-E E C
er—ez

2

-8 J2)_1 |2 e
‘v{u_{l_ez[(e’“se*

1+ ecos Vv

Ul - eZ
r
+(——cos V)N}; 0<e<l
ae
iF and V1 - €2 replaced by i\/ea - 1.

(cos?v + 3 cos vV + l)]C

_ p p)| (4 cos
~ V(T + cos V) \/'—u-{[

ol
<

[if
™|

+
<1Nl|»g

r |feT® + N2 r TN - NT
SRR o] + e =0
2 <4T2N2) V<412+N2>’

—— I
Lo 2R - ave s SR, eso
4C” + R 40 + R

- [2 cosdv + 4 coszv + cos v - ZJR}, e =1
2
v+ 7 cos v+ 4)sin v
+ =
5T T cos ) ]T (cos V)N}, e =1




TABLE ITI. - Continued. DERIVATIVES OF ORBITAL ELEMENTS AND PARAMETERS

(a) Concluded.

perturbations

Time derivatives of orbital elements due to

Q

Ascending node

r sinu
- (ﬁm)w 170

Inclination

Z.E=(-\/r§i_cosu>w

m!

Semimajor axls
2a P )
= JE-[(e gin v)R + (r)C]
(ZaZV) T
u

r

He
el
I

l+e

b 1Y

"

Radius of pericenter

{_r. [e sinév + 2(1 - cos v)]C - (sin v)R}

D

1l -cos v
[er — T+ (r sin V)N:l

<t

=%(ZC$\}4CZ+R2), e=0
\/4T2+N2), e=0

e
3]
H
+

202T~Hd
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TABLE II. - Concluded. DERIVATIVES OF ORBITAL ELEMENTS AND PARAMETERS

(b) Time derivatives of orbital parameters due to both
orbital motion @nd perturbations

Mean anomaly

- e2 i
-t p(l e)(cosv_2£>R_81nv(l+£>C’
! e P S p

2
-n-V¥YL-¢ [Z(Sin v)(.rﬁ + i)'I' + (______r cOs V)N],
v e e ae

z.

The results for M for e > 1 are identical to the preceding results
for 0<e<l, but with n replaced by iv and Vl - e replaced

vy iVe? - 1.

0<e<

0<e<l

2 Ve

. Ame 2 . .
M:n—l+EOT+N21 2TN -mz—NTZ’ e =0
er Vgt + y vAae s g2 iTC + W
2 2 . .
_ Vv R{7C” + 2R - 2CR CR - RC
R o e B TlTE T 2) e=0
4C° + R v V402 + RZ 4C° + R
True ancmaly
venfip il _p(cosv)R-(sinv)(1+£)C, e 40
rz e YK P
=3@—-]:—[(2 sin v)T + £ (2e + €2 cos v + cos v)N]} e 40
1Y

(49
1
(@}

V. Nf2r® + N2\ TN - NT
=357 " T - 3
ar Viar® + %) o+ W

2 bR
G P e . -0
sc® + R/ 4c”® + R

R
Y
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TABLE III. - COMPONENTS OF THE DISTURBING ACCELERATION

R = Ax(cos ucos R - sin u sin Q cos I)
+ Ay(cos u sin @ + sin u cos @ cos I) + A, sinusin I
C = Ag(- sin u cos Q - cos u sin Q cos I)
+ Ay(- sin u sin @ + cos u cos Q cos I) + Ay cos usin I
W= A, 8in Q sinI--A.ycosxSZsinI+AZ cos I
T=(1+ e? + 2e cos v)_(l/z)[(l + e cos v)C + (e sin V)R]
=-l—(-3@0+i'R)
i r
= C, e =0
2
T=c+%-, e=0
N =(1+e? + 2e cos v)'(l/z) [(e sin v)C - (1L + e cos V)R]
-3 (rC —JE;L-_I-;R)
= "R; e = 0
. CR .
N=T"R} e=0
¢ = (1+ e? + 2e cos v)‘(l/z)[l + e cos V)T + (e sin v)N]
1 qué N
=Tr< g T+I'N)
é=i“l‘;‘f'; e=20
R=(1+ e + 2e cos v)'(l/z)[(e sin v)T - (1L + e cos Vv)N]
=i<iT_J@N)
v r
].R‘=R—'I““]..\I; e =0

20214
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In-plane component
of disturbing
acceleration—

v

4
I

I
—3

Pericenter

P

Figure 2. - Diagram in orbital plane showing resoluticn
of in-plane disturbing acceleration into radial (R)
and circumferential (C), or tangential (T) and normal
() systems.

NASA-Langley, 1962 EK=-1202



